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Solutions of the type of traveling waves defining heat transfer and gas motion with account for the relaxation
of the heat flow have been obtained and investigated. A comparative analysis of solutions of both types has
been carried out. It is shown that, in the case where the relaxation of the heat flow is taken into account,
solutions of the type of traveling waves can exist for any relation between the velocity of the traveling wave
and the velocity of sound.

Introduction. In many cases where heat-transfer processes are investigated, the heat flow W is defined by the
Fourier law:

W = WF = − K grad dT .

However, the Fourier law can be used only in the case where the mean free path and the mean free time of particles
are small as compared to the characteristic space and time scales of change in the temperature of a medium. For ex-
ample, in a laser plasma, because of the small sizes of the targets exposed to radiation and the high temperatures, the
range of electrons and the linear scales of the problem are frequently of the same order of magnitude. In this case, the
Fourier model gives overstated heat flows that can be larger than the limited "vacuum" flow Wv arising as a result of
the coordinated motion of electrons in one direction. At the moment there are several models allowing one to solve
the problem being considered. In the present investigation we will use the model of hyperbolic heat transfer including
the heat-flow relaxation W = −K grad T − τdW ⁄ dt. This model has a rigorous physical substantiation — it is obtained
from the kinetic equations by the Grad method of 13 moments (the deduction of the corresponding equation is given,
e.g., in [5]).

The processes of gas motion and heat transfer will be analyzed using solutions of the type of traveling waves.
It was shown earlier for models based on the Fourier law that these solutions can be obtained only in the region
where the velocity of a traveling wave is larger than the velocity of sound [1]. However, it was established that solu-
tions of the type of traveling waves including the relaxation of a heat flow allow one to consider thermal and gas-dy-
namic quantities with physical properties changing in a wide range. In this case, both supersonic and subsonic flows
can be considered. Unlike the Fourier model, in the model of hyperbolic heat transfer, the desired functions, including
the temperature and heat-flow functions, experience discontinuities at the initial stage and in the process of their
change with space and time.

Traveling Waves Including a Hyperbolic Heat Transfer in an Immovable Medium. Formulation of the
problem. The heat transfer with a heat-flow relaxation in an immovable medium is defined by the system of equations
in mass variables m ≥ 0 and t ≥ 0, constructed in the plane-symmetry approximation,

R
γ − 1

 
∂T

∂t
 = − 

∂W

∂m
 , (1)

W = − K 
∂T

∂m
 − τ 

∂W

∂t
 ,   K = K0T

 a0 ,   τ = τ0T
 a1 ,   a0 > 0 ,   a1 > 0 . (2)
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Let, in the plane m = 0,

W (0, t) = W0t
g
 . (3)

At t = 0,

T (m, 0) = 0 ,   W (m, 0) = 0 . (4)

The solution of problem (1)–(4) is self-similar on condition that a1 = (a0 + 2) ⁄ (2g + 1). The independent variables and
desired functions are represented in the dimensionless form

s = 
m

(R−(a0+1)
K0W0

a0)1
 ⁄ (a0+2)

 t
n
 ,   f (s) = 

T (m, t)

(R−1
K0
−1

W0
2)1

 ⁄ (a0+2)
 t

n0
 ,   ω (s) = 

W (m, t)

W0t
g  , (5)

where

n = 
(g + 1) a0 + 1

a0 + 2
 > 0 ;   n0 = 

2g + 1

a0 + 2
 = 

1

a1
 .

Replacement of variables (5) makes it possible to reduce system (1), (2) to the system of ordinary differential equa-
tions for s ≥ 0

1
γ − 1

 

n0 f − nsf ′  


 = − ω′ ,   ω = − f

 a0f ′  − τl0 f
 a1 (gω − nsω′) , (6)

where τl0 = τ0 




W0
2

RK0





a1

a0+2
 is a dimensionless constant, and the prime denotes derivative with respect to s. The boundary

conditions (3) and (4) in variables (5) have the form

ω (0) = 1 , (7)

f (s0) = 0 ,   ω (s0) = 0 ,   0 < s0 ≤ ∞ . (8)

At τ = 0 (Fourier law), problem (1)–(4) has a continuous solution [1]. In the case where s = s0 and 0 < s0 ≤ ∞, the
desired functions f = f(s) and ω = ω(s) satisfy conditions (8). At τ0 ≠ 0 [2–4], the functions T = T(m, t) and W = W(m, t)
can experience a large discontinuity because of the hyperbolic heat transfer:

D = 
dm0

dt
 = ns0 R

−(a0+1)
K0W0

a0

1 ⁄ (a0+2)

 t
n−1

 . (9)

In the case where a "zero background" (4) is realized downstream of the discontinuity front,

R
γ − 1

 T2D = W2 ,   W2D = V2 , (10)

where the parameter V2 is determined from the following considerations [3, 4]. Let a heat flow is defined as
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∂W

∂t
 = − 

∂V

∂m
 − 

W
τ

 , (11)

where the function V = V(m, t) satisfy the equation

∂V
∂m

 = 
K (T)
τ (T)

 
∂T

∂m
 = 

dV
dT

 
∂T
∂m

 . (12)

Using (2), we can write the term 
dV
dT

 in (12) in the form

dV

dT
 = 

K0

τ0
 T

 a0−a1 . (13)

Upon integrating (13) at a0 – a1 + 1 ≠ 0, we obtain V = 
K0

τ0 (a0 − a1 + 1)
 T a0−a1+1 + C0. Let V = 0 at T = 0 and

a0 − a1 + 1 > 0; then C0 = 0 and, consequently, V2 = 
K0

τ0 (a0 − a1 + 1)
 T2

 a0−a1+1. Formulas (10) in variables (5) will take

the form

1

γ − 1
 f2ns0 = ω2 ,   ω2ns0 = 

f2
 a0−a1+1

τl0 (a0 − a1 + 1)
 . (14)

Construction of solution of the type of traveling waves. Let us assume that the desired functions obtained as
a result of the self-similar solution of problem (1)–(4) can be represented in the form of a traveling wave:

T (m, t) = T
~

 (D
__

t − m) ,   W (m, t) = W
~

 (D
__

t − m) ,   D
__

 = const . (15)

Because of the self-similarity of the indicated solution, it may be assumed that F(D
__

t − m) = F
__

(m ⁄ t), i.e., that n = 1 in
the expression for the variable s. Then we obtain that g = 1 ⁄ a0, n0 = 1 ⁄ a0, and a0 = a1.

At n = 1, D = const. Let D
__

 = D; then the system of equations (6) will take the form

1
γ − 1

 




1
a0

 f − sf ′ 



 = − ω′ ,   ω = − f

 a0f ′  − τl0 f
 a0 





1
a0

 ω − sω′



 ,   0 ≤ s ≤ s0 ,   0 < s0 ≤ ∞ . (16)

The solution of system (16) satisfies the boundary condition (7) and directly the equation for the "zero background"
(8) or, if, at s = s0, a large discontinuity takes place, conditions (10), which, in variables (5), at n = 1 and a0 = a1,
take the form:

ω2 = 
1

γ − 1
 f2s0 ,   s0

2
 = 
γ − 1

τl0

 . (17)

Equation (1) can be written as

R
γ − 1

 D 
dT
dy

 = 
dW
dy

 ,   y = D
__

t − m . (18)
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The solution of Eq. (18) at condition (4) and the possible condition of discontinuity of the desired quantities (10) has
the form W = RDT ⁄ (γ − 1), which, in variables (5), can be represented as

ω = 
1

γ − 1
 fs0 . (19)

Using relation (19), we obtain ω′ = 
s0

γ − 1
 f ′. In this case, Eq. (16) can be written in the following form:

1
γ − 1

 




1
a0

 f − sf ′ 



 = − 

1
γ − 1

 s0 f ′  , (20)

s0 f

γ − 1
 = − f

 a0f ′  − 
1

γ − 1
 τl0s0 f

 a0 




1
a0

 f − sf ′ 



 . (21)

Rearrangement of Eqs. (20) and (21) gives the equation f a0−1(τ0s0
2 − γ + 1)f ′ = s0, which, upon integration, takes the

form

f
 a0 = 

s0a0

τl0s0
2
 − γ + 1

 s + C . (22)

It follows from (22) that the condition s0
2 = (γ −1) ⁄ τ

l

0 can be formally fulfilled only at f = ∞. Therefore, at both τl0 = 0
and τl0 ≠ 0, the solution being considered should be continuous at a finite value of f. From the condition f(s0) = 0 we
obtain that C = (−s0

2a0) ⁄ (τ0s0
2 − γ + 1). Relation (22) takes the form

f = 




s0a0

γ − 1 − τl0s0
2





1 ⁄ a0

 (s0 − s)1
 ⁄ a0 . (23)

At τl0 = 0, relation (23) and the expression for the heat flow ω = fs0
 ⁄ (γ − 1) are identical to the corresponding formu-

las presented in [1] for the case of the Fourier law. It follows from (23) that the inequality τl0 < (γ − 1) ⁄ s0
2 should be

fulfilled, i.e., the parameter τl0 proportional to the relaxation time of the heat flow τl0 is limited from above.
The boundary condition (7) leads to the relation s0

 ⁄ f(0) ⁄ s(γ − 1) = 1, or, in view of (23), to the relation

1

γ − 1
 s0 





s0
2
a0

γ − 1 − τl0s0
2





1 ⁄ a0

 = 1 . (24)

Rearrangement of expression (24) gives the relation

s0
2
 a0s0

a0 + (γ − 1)a0 τl0

 = (γ − 1)a0+1

 . (25)

Using the algebraic formulas (24) and (25), we can determine the parameter s0, i.e., the coordinate characterizing the
depth of heating at different values of τl0 limited by the condition 0 ≤ τl0 < (γ − 1) ⁄ s0

2.

Figure 1 presents the distribution of the function f = f(s) at f = 
3s0

2 − 3τ0s0
2(s0 − s) for the coordinate s = s0 at

different values of τl0. An analysis has shown that, with increase in τl0, the absolute temperature increases and the

depth of heating decreases.
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At a0 = 2, from (25) we obtain the biquadratic equation 2s0
4 + (γ − 1)2 τl0s0

2 − (γ − 1)3 = 0, the solution of
which has the form

s0
2
 = 

1
4

  (γ − 1)2 


√τl0

2
 + 

8
γ − 1

 − τl0



 .

Figure 2 shows the distribution f = f(s) at f = 




6s0

2 − 3τl0s0
2





1 ⁄ 2

(s0 − s)1 ⁄ 2 for the coordinate s = s0 at different

values of τl0. Let us write relation (23) in the dimensional form:

T = 











R
−1

K0
−1

a0D

γ − 1 − 
τ0R

K0
 D

2











1 ⁄ a0

 (Dt − m)1
 ⁄ a0 . (26)

In the case of relaxation of a heat flow (τ ≠ 0), the mass velocity of propagation of the thermal disturbances

is determined by the relation DT = √(γ − 1)K
τR

 (see, e.g., [2–5]). In the case being considered, where a1 = a0, we can

write that DT
2 = K0(γ − 1) ⁄ τ0R and formula (26) takes the form

T = 












K0
−1

Ra0D

(γ − 1) 



1 − 

D
2

DT
2
















1 ⁄ a0

 (Dt − m)1
 ⁄ a0 . (27)

Function (27) is determined in the region of m ≤ DT, where DT
2 > D2. At m ≤ Dt, the heat flow is defined as W =

RDT ⁄ (γ − 1). At m ≥ DT, T B and W B 0.

Fig. 1. Dependence of the dimensionless temperature on s (γ = 5 ⁄ 3, a0 = 1):
1) τl0 = 0 and s0 = 0.763; 2) 2 and 0.493; 3) 10 and 0.253; 4) 25 and 0.1625;
5) 50 and 0.11527.

Fig. 2. Dependence of the dimensionless temperature on s (γ = 5 ⁄ 3, a0 = 2):
1) τl0 = 0 and s0 = 0.624; 2) 2 and 0.473; 3) 10 and 0.258; 4) 25 and 0.165.
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Hyperbolic Heat Transfer in the Form of Traveling Waves Including a Gas Motion. Formulation of the
problem. The system of gas-dynamic equations including a hyperbolic heat transfer is written in Lagrange mass vari-
ables m and t in the plane-symmetry approximation

∂
∂t

 




1
ρ



 = 

∂v

∂m
 ,   

∂v

∂t
 = − 

∂p

∂m
 ,   

∂
∂t

 



ε + 

1
2

 v
2


 = − 

∂
∂m

 (pv + W) ,   p = p (ρ, T) ,   ε = ε (ρ, T) . (28)

As in the previous case, the heat flow W is defined with account for its relaxation:

W = − K 
∂T

∂m
 − τ 

∂W

∂t
 ,   K = K (ρ, T) ,   τ = τ (ρ, T) . (29)

In the case where the relaxation of the heat flow is taken into account, the system of equations (28), (29) admits a
large discontinuity of the desired quantities, including the temperature function T = T(m, t) and the function of the
heat-flow density W = W(m, t).

The relations for the desired quantities at the possible discontinuity front will be written with the use of the
auxiliary function V = V(m, t) satisfying the equation

∂V

∂m
 = 

K (ρ, T)
τ (ρ, T)

 
∂T

∂m
 . (30)

With the use of (30) at τ ≠ 0, Eq. (29) can be represented in the form

∂W

∂t
 = − 

∂V

∂m
 − 

W
τ

 . (31)

Let m = mj = mj(t) is the wake of the discontinuity surface in the plane (m, t), then D = dmj
 ⁄ dt is the mass velocity

of the discontinuity front. The relation for the desired quantities at the discontinuity front will be obtained by formal
integration of the gas-dynamic equations much as this was done in [6]. Let us integrate (28) and (31) over the small
region (reducing to the zero volume) of change in the independent variables m and t, including a discontinuity line:





1
ρ2

 − 
1
ρ1




 D = v1 − v2 ,   (v2 − v1) D = p2 − p1 ,




ε2 + 

1
2

 v2
2
 − 

1
2

 v1
2
 − ε1




 D = p2v2 − p1v1 + W2 − W1 ,   (W2 − W1) D = V2 − V1 . (32)

Let the velocity of the piston and the temperature regime at its surface in the plane m = 0

v (0, t) = v∗ (t) ,   T (0, t) = T∗ (t) (33)

be selected such that the gas-dynamic and thermal disturbances propagate along the front

v1 = 0 ,   T1 = 0 ,   p1 = 0 ,   W1 = 0 ,   V1 = 0  ,   ρ1 = ρ0 = const (34)

in the form of a traveling wave; i.e., for each desired function F we can write the following relations: F(m, t) =
F
l

(Dt − m), D = const. In the subsequent discussion we will use the following equations of ideal-gas state:
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p = RρT ,   ε = 
RT
γ − 1

 .
(35)

Let

K = K0T
 a0ρb0 ,   τ = τ0T

 a1ρb1 ,   a0 ≥ a1 > 0 . (36)

We will represent the independent variables and desired functions in the dimensionless form

x = 
Dt − m

K0D
2a0−1

R
−(a0+1)ρ0

−2a0+b0
 ,   η = η (x) = 

ρ0

ρ (m, t)
 ,

α = α (x) = 
v (m, t)

Dρ0
−1

 ,   β = β (x) = 
p (m, t)

D
2ρ0

−1
 ,   f = f (x) = 

RT (m, t)

D
2ρ0

−2
 , (37)

ω = ω (x) = 
W (m, t)

D
3ρ0

−2
 ,   V

l

 = V
l

 (x) = 
V (m, t)

D
4ρ0

−2
 .

Equations (28), (29), and (31) are reduced with the use of (37), (35), and (36) to the ordinary differential equations
for x

dη
dx

 = − 
dα
dx

 ,   
dα
dx

 = 
dβ
dx

 ,   
d
dx

 




f
γ − 1

 + 
α2

2




 = 

d
dx

 (αβ + ω) , (38)

dV
l

dx
 = 

1
ϕ0

 f
 a0−a1η−b0+b1 

df
dx

 , (39)

dω
dx

 = 
dV
l

dx
 − 

1
ϕ0

 ωf
 −a1ηb1 , (40)

where β = 
f

η
 and ϕ0 = 

τ0Ra0−a1+1

K0D2(a0−a1−1) ρ0
−2(a0−a1)+b0−b1

 is a dimensionless constant.

Upon integration of (38) we obtain

η = C0 − α ,   α = C1 + β ,   
f

γ − 1
 + 
α2

2
 − βα − ω = C2 . (41)

Let us determine the position of the front of a traveling wave by the quantity m = Dt in variables (37) — by the co-
ordinate x = 0. To a disturbed medium corresponds the region of m ≤ Dt, i.e., the region of x ≥ 0. In the case of a
large discontinuity at τ ≠ 0, the velocity of propagation of the traveling-wave front will be assumed to be equal to the
velocity of discontinuity propagation. The relations for the desired quantities at the discontinuity front (32) and (34) in
variables (37) will take the form

α1 = f1 = β1 = ω1 = V
l

1 = 0 ,   η1 =1 , (42)
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α2 = 1 − η2 ,   β2 = α2 = 1 − η2 ,   ω2 = 
f2

γ − 1
 + 
α2

2

2
 − β2α2 ,   V

l

2 = ω2 . (43)

Rearrangement of the dimensionless functions of temperature f2 and heat flow ω2 gives

f2 = η2 (1 − η2) ,   ω2 = 
1
2

 
γ + 1

γ − 1
 (1 − η2) 




η2 − 

γ − 1

γ + 1




 . (44)

In this case, C0 = 1, C1 = 0, and C2 = 0 in accordance with (43) and (44), and formulas (41) take the form

α = 1 − η ,   β = 1 − η ,   f = η (1 − η) ,   ω = 
1
2

 
γ + 1
γ − 1

 (1 − η) 



η − 

γ − 1

γ + 1




 . (45)

Functions (45) also directly satisfy conditions (42).
With the use of (39) and (45), the equations for the functions V

l

 = V
l

(x) in the region of x ≥ 0 can be written as

dV
l

dη
 = 

1
ϕ0

 ηa0−a1−b0+b1 (1 − η)a0−a1 (1 − 2η) . (46)

It would appear reasonable that the following boundary condition can be set for (46): η = 1 (f = 0), V
l

 = 0. On rear-
rangement with the use of (39), (40), and (45), we obtain an equation for determining the dimensionless specific vol-
ume η in the region of x ≥ 0, 0 ≤ η ≤ 1:

dη
dx

 = 
1
2

 
γ + 1

γ − 1
 

η − 
γ − 1

γ + 1

ηa0−b0 (1 − η)a0−1
 (1 − 2η) + ϕ0 

γ + 1

γ − 1
 



η − 

γ
γ + 1




 ηa1−1

 (1 − η)a1−1
 .

(47)

Characteristic properties of the solution. We now consider a number of properties of the solution of Eq. (47)
at a0 > 0 and a1 > 0.

1. It will be assumed that η = 1 − ηl , where ηl  > 0, is a small quantity in the neighborhood of x = 0, η = 1.

At ϕ0 = 0 (the heat flow is adequately defined by the Fourier law), the solution of the problem being con-

sidered is continuous. At x = 0, it is required that η = 1. Near x = 0, we obtain that η = 1 − 




a0

γ − 1





1 ⁄ a0

x1 ⁄ a0.

Let ϕ0 ≠ 0.

a) Conserving the principal terms in (47) at a0 = a1 and ϕ0 ≠ γ − 1, we obtain η~ a0 = 
a0

γ − 1 − ϕ0
 x. The vari-

able η~ can reach the value η~ = 1 in the region of x > 0 only at a limited value of the parameter ϕ0: ϕ0 < γ − 1. In

this case, in the neighborhood of x = 0, η = 1, the solution of Eq. (47) is also continuous. The asymptotic solution

in the neighborhood of x = 0, η = 1 has the form η = 1 − 




a0

γ − 1 − ϕ0





1 ⁄ a0

x1 ⁄ a0.

b) Concerving the principal terms in Eq. (47) at a0 = a1 and ϕ0 = γ − 1, we obtain dη~ ⁄ dx = η~ a0 and, conse-
quently, η~ = 1 − [(a0 + 1)x]1 ⁄ (a0+1) in the region of x > 0 near x = 0. Thus, in the case where a0 = a1, the solution of
the problem being considered is continuous at ϕ0 ≤ γ − 1 (η(0) = 1), and this solution should be discontinuous at
ϕ0 > γ − 1 (η(0) = η2, 0 < η2 < 1).
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c) Let a0 > a1 > 0 and ϕ0 ≠ 0. Equation (47) can be written with accuracy to the principal term as 
dη~

dx
 =

1

η~ a1−1
, whence it follows that 

1
a1
η~ a1 = −x. It follows from this equation that the function η~ can formally reach the

value of η~ = 0 (η = 1) only in the region of x < 0, which is contradictory to the physical sense. This means that, at

x = 0 (m = Dt), the function η~ = ρ0
 ⁄ ρ(m, t) necessarily experiences a discontinuity: it is required that η(0) =

η2 < 1. At x = 0, the other desired functions (45) have a discontinuity too.

2. We now consider the asymptotics of the solution of Eq. (47) at η → (γ − 1) ⁄ (γ + 1),  1 < γ < 3. As is
known, in the case where ϕ0 = 0, η →(γ − 1) ⁄ (γ + 1) at x → −∞ (see [1, 7]). The solution has a physical meaning only
at η ranging from 0.5 to 1 in the finite interval of change in the independent variable 0 ≤ x ≤ x0, η(x0) = 0.5 and, con-
sequently, during a finite time: 0 ≤ t ≤ t(x0). It was shown in [1, 7] that, in the indicated region of change in x and
η and, correspondingly, in m, t, and ρ, heat is transferred with a supersonic velocity: the condition D > ρCγ, where
Cγ = √RT , is fulfilled. At η = 0.5, we have D = ρCγ.

It is assumed that in the neighborhood of η = 
γ − 1

γ + 1
, η = 

γ − 1

γ + 1
 + z, where z > 0 is a small quantity. On rear-

rangement, Eq. (47) takes, with accuracy to the principal terms, the form

dz

dx
 = 

B0

A0 − ϕ0
 z , (48)

where A0 = 
(2(γ − 1))a0−a1(γ − 1)b1−b0+1(3 − γ)

(γ + 1)2(a0−a1)+b1−b0+1
 and B0 = 

(γ + 1)2a1−b1

2a1(γ − 1)a1−b1
 are positive constants and ϕ0 ≠ A0. Equation (48)

is solved as

x = 
A0 − ϕ0

B0
 ln C z ,

(49)

where z = η − 
γ − 1

γ + 1
. Let

A0 = ϕ0
cr

 . (50)

In this case, the distribution η = η(x) changes its direction along x. It follows from (49) that η → 
γ − 1

γ + 1
 at x → −∞ in

the case where ϕ0 < ϕ0
cr and at x → +∞ in the case where ϕ0 > ϕ0

cr.

Thus, in the case of hyperbolic heat transfer, unlike the cases of gas motion and heat transfer in the form of
traveling waves by the Fourier law (ϕ0 = 0), Eq. (47) and equations for the other desired functions (45) can have so-
lutions throughout the range of change in the independent variable x ≥ 0 (m ≥ 0 at any t ≥ 0).

Let us consider a number of concrete examples of solving Eq. (47) at different values of the parameter
ϕ0 ≥ 0.

Analytical solutions at a0 = a1, b0 = b1. In this case, Eq. (47) takes the form

dη
dx

 = 
1
2

 
γ + 1

γ − 1
 

η − 
γ − 1

γ + 1

ηa0−b0 (1 − η)a0−1
 



1 − 2η + ϕ0 

γ + 1

γ − 1
 



η − 

γ
γ + 1









 .
(51)

In the subsequent discussion we assume that γ = 5 ⁄ 3. Let a0 = 1 and b0 = 1. Upon integrating (51) we obtain
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x = (2ϕ0 − 1) η + 
1
4

 (1 − 3ϕ0) ln 

η − 

1
4



 + C . (52)

a) At ϕ0 = 0, the constant C is determined from the condition η = 1 at x = 0. In this case, formula (52)

takes the form x = 1 − η + 
1
4

 ln 
4η − 1

3
. This solution has a physical meaning only in the finite range of change in the

independent variable 0 ≤ x ≤ x0 C 0.225. The function η = η(x) decreases with increase in x as long as η(x0) = 0.5. At

the point x = x0, η(x0) = 0.5 we have dη ⁄ dx = ∞; i.e., this point is a point of rotation of the integral curve η = η(x).

The region where η < 0.5 has no a physical meaning: η → 0.25 at x → −∞.

b) As was shown above, the solution of the problem being considered is continuous at ϕ0 ≤ γ − 1 = 2 ⁄ 3. At

a0 = 1, b0 = 1, and γ = 5 ⁄ 3, from (50) it follows that ϕ0
cr = 1 ⁄ 3. Consequently, η → 

γ − 1
γ + 1

 = 
1
4

 at x → ∞ in the case

where ϕ0 > 1 ⁄ 3. Let ϕ0 = 0.5. The solution of Eq. (52) is continuous. When the constant C in (52) is determined at

ϕ = 0.5 and η(0) = 1, x = − 
1
8

 ln 
4η − 1

3
 or, in the explicit form, η = 

1
4

[1 + exp (−8x)]. The problem being considered

has a solution in the case where 0 ≤ x ≤ ∞ and 1 ≥ η ≥ 0.25. In this case, at the point x = 0, by analogy with the case

where ϕ0 = 0, the solution is continuous  (η(0) = 1).

c) If ϕ0 > 2 ⁄ 3, a discontinuity should exist at x = 0. When the values of the parameters a0 and b0 fall within

the range being considered, Eq. (46) takes the form 
dV

~

dη
 = 

1
ϕ0

 (1 − 2η). The solution of this equation at the boundary

condition η = 1, V
~

 = 0 has the form V
~

 = 
1
ϕ0

 η (1 − η). Using the relation for the discontinuity front V
~

2 = ω2, we

obtain that η2 = 
ϕ0

2(2ϕ0 − 1)
. Let ϕ0 = 1, then η2 = 0.5. Formula (52) determining the implicit expression for the func-

tion η = η(x) in the region where x ≥ 0 and 0.5 ≥ η ≥ 0.25 can be written as x = −0.5(ln (4η − 1) + 1 − 2η).
Figure 3 presents profiles of the function η = η(x) at x ≥ 0. At the values of ϕ0 ≠ 0 selected, the function η

= η(x) exists in the region where 0 ≤ x ≤ ∞; consequently, t > 0 at η(0) = 1 as well as in the case where, at x = 0,
there takes place a large discontinuity: η(0) = η2 < 1. At ϕ0 = 1 (Fourier law), the solution has a physical meaning
only in the region where 0 ≤ x = x0 C 0.225.

Some examples of solutions at a0 > a1 > 0. The characteristics of the traveling waves including a heat-flow re-
laxation experience a large discontinuity at x = 0.

Let a0 − a1 = 1, b1 = 1, and, once again, γ = 5 ⁄ 3. In this case, Eq. (46) will take the form

dV
l

dη
 = 

1
ϕ0

 η (1 − 3η + 2η2) . (53)

Fig. 3. Profiles of the function η = η(x), x ≥ 0 at a0 = a1 = b0 = b1 = 1, γ =
5 ⁄ 3 and different values of ϕ0: ϕ0 = 0 (1), 0 (the portion of curve 1 having
no physical meaning) (2), 0.5 (3), and 1 (4).
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Integration of (53) gives V
~

 = 
1

2ϕ0
 η2 (1 − η)2. From the condition for the discontinuity front, where x = 0,

0.25 < η2 < 1, and γ = 5 ⁄ 3, it follows that

ϕ0 = 
η2

2
 (1 − η2)

4η2 − 1
 . (54)

It follows from (50) that the "critical" value of the parameter ϕ0 is determined by ϕ0
cr = 0.0625. Let us consider

Eq. (47) at a0 = 2, a1 = 1, b0 = b1 = 1, and γ = 5 ⁄ 3

dη
dx

 = 

2 



η − 

1
4





η (1 − η) (1 − 2η) + 4ϕ0 



η − 

5
8





 . (55)

This equation is solved as

x = C + 
3
4

 




1
16

 − ϕ0



 ln 


η − 

1
4



 + 

1
3

 



η − 

1
4





3

 − 
3
8

 



η − 

1
4




2

 − 2 




1
32

 − ϕ0



 



η − 

1
4




 . (56)

Figure 4 presents a number of profiles of the function η = η(x) at different values of the parameter η = η(0)

and the dimensionless constant ϕ0. In this figure, curve 1 obtained for a heat flow defined by the Fourier law (η(0) = 1,

ϕ0 = 0) and hyperbolic-heat-transfer profiles having a discontinuity at x = 0 are presented. The following boundary con-

ditions were set: η(0) = η2, 0.25 < η2 < 1. The values of the parameters were determined by formula (54) for different

values of ϕ0: η2 = 0.8, ϕ0 = 16 ⁄ 275 E 0.05818 < ϕ0
cr (curve 2); η2 = 2 ⁄ 3, ϕ0 E 4 ⁄ 45 E 0.08889 > ϕ0

cr (curve 3), and

η2 = 0.5, ϕ0 = 0.125 > ϕ0
cr (curve 4). In the two last-mentioned cases, the solution of the problem being considered

exists in the region where 0 ≤ x ≤ ∞ and η2 > η ≥ 
γ − 1

γ + 1
 = 

1
4

, i.e., throughout the range of change in the variable x. The

function η = η(x), having a discontinuity at x = 0, for which, however, ϕ0 < ϕ0
cr (see curve 2), has, by analogy with the

Fourier law (ϕ0 = 0), a physical meaning only in a finite range of change in x. (The values of η = η(x) that have no a

physical meaning are shown in Figs. 3 and 4 by a dotted line.)
Figure 5 presents profiles of the functions

ψ = ψ (x) = 
D

ρ√RT
 = 

η
√f

 = √η1 − η
 , (57)

Fig. 4. Distribution of the specific volume along the variable x at a0 = 2, a1 =
1, and different values of ϕ0: 1) ϕ0 = 0 and η(0) = 1; 2) 16 ⁄ 275 and 0.8; 3)
4 ⁄ 45 and 2 ⁄ 3; 4) 1 ⁄ 8 and 0.5.
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determining the ratio between the velocity of the front of a traveling wave and the mass velocity of sound for each
of the curves η = η(x) shown in Fig. 4.

As already noted, the problem being considered is solved at ϕ0 = 0 on condition that D ≥ ρCγ (see curve 1
in Fig. 5). In the case of hyperbolic heat transfer where 0 < ϕ0 < ϕ0

cr, the solution of the type of a traveling wave ex-
ists only in the limited range of change in x 0 ≤ x ≤ x1 (curve 2 in Fig. 4). However, unlike the case where ϕ0 = 0,
in the regions where the solution exist, the velocities D and ρCγ become subsonic. At ϕ0 > ϕ0

cr (curves 3 and 4 in
Figs. 4 and 5) the solution with a discontinuity at the point x = 0 exists at all the values of the variable x ≥ 0. In this
case, in a larger part of the region of existence of the solution there takes place a subsonic heat transfer. For example,
for curve 4, D = ρCγ only at x = 0. In the region of x > 0, D < ρCγ.

Traveling waves with an "internal" discontinuity. As was noted above, in the case where a heat flow is de-
fined by the Fourier law, in the region of existence of a continuous solution of the problem being considered, there
takes place a supersonic heating: D ≥ ρ√RT . In the case where the Fourier law is fulfilled, the authors of [1, 7] have
gone to D < ρ√RT  by introduction of discontinuities at any points inside the region of existence of the solution. At
τ B 0, the discontinuity is isothermic.

Below is presented an example of the distribution of the function η = η(x) with the above-mentioned "inter-
nal" discontinuity in the case of hyperbolic heat transfer at ϕ0 ≠ 0.

Let the values of the desired functions be determined at the point x = x1, 0 < x1 < ∞:

α = α1 ,   η = η1 ,   f = f1 ,   β = β1 ,   ω = ω1 ,   V
~

 = V
~

1 . (58)

In the case where equalities (58) are fulfilled, the constants in (41) will take the form C0 = η1 + α1, C1 = α1 − β1,

C2 = 
1

γ − 1
 f1 + 

1
2

 α1
2 − β1α1 − ω1. As a result, the desired functions are determined by the formulas

α = η1 + α1 − η ,   β = α − α1 + β1 = β1 + η1 − η ,

f = βη = η (β1 + η1 − η) ,   ω = ω1 + (η1 − η) 



− 

γ
γ − 1

 β1 + 
γ + 1

2 (γ − 1)
 



η − 

γ − 1

γ + 1
 η1








 .

(59)

Let us write the relations for the discontinuity front (32) in variables (37)

η2 − η1 = α1 − α2 ,   α1 − α2 = β2 − β1 ,

Fig. 5. Distribution of the ratio between the velocity of a traveling wave and
the velocity of sound along the variable x at different values of ϕ0: 1) ϕ0 = 0
and η(0) = 1; 2) 16 ⁄ 275 and 0.8; 3) 4 ⁄ 45 and 2 ⁄ 3; 4) 1 ⁄ 8 and 0.5.

319



1
γ − 1

 η2β2 + 
1
2

 α2
2
 − 

1
γ − 1

 η1β1 − 
1
2

 α1
2
 = β2α2 − β1α1 + ω2 − ω1 ,   V

~
2 − V

~
1 = ω2 − ω1 .

On rearrangement, we obtain

α2 = α1 + η1 − η2 ,   β2 = β1 + η1 − η2 ,   f2 = β2η2 = η2 (β1 + η1 − η1) ,

ω2 = ω1 + (η1 − η2) 




1
2

 
γ + 1

γ − 1
 



η2 − 

γ − 1
γ + 1

 η1



 − 

γ
γ − 1

 β1



 ,   V

~
2 − V

~
1 = ω2 − ω1 .

(60)

For the above-presented distributions of the functions η = η(x) at a0 = 2 and a1 = b0 = b1 = 1 (see Fig. 4), the so-
lution of Eq. (53) at the boundary condition η = 1, V

~
 = 0 is determined by the formula

V
~

 = 
1

2ϕ0
 η2

 (1 − η)2 . (61)

The relation V
~

2 − V
~

1 = ω2 − ω1 can be written, in view of (61), for the values of the quantities upstream of the dis-
continuity front (η = η1, ϕ0 = ϕ01) and downstream of it (η = η2, ϕ0 = ϕ02) in the following form:

1
2ϕ02

 η2
2
 (1 − η2)

2
 − 

1
2ϕ01

 η1
2
 (1 − η1)

2
 = ω2 − ω1 . (62)

We now consider the curves constructed in Fig. 4 for the case where ϕ0 ≠ 0. Let a portion of any of this curves cor-
responds to the range of change in the independent variable 0 ≤ x ≤ x1 at a given value of ϕ0 = ϕ01. Since, in the in-
dicated region, the desired functions are determined by formulas (45), it may be assumed that β1 = 1 − η1 in (60). In
this case, relation (62) will take the form

1
2ϕ02

 η2
2
 (1 − η2)

2
 = 

1
2ϕ01

 η1
2
 (1 − η1)

2
 + (η1 − η2) 




− 

γ
γ − 1

 + 
γ + 1

2 (γ − 1)
 (η1 + η2)




 . (63)

It follows from (63) that

ϕ02 = 
η2

2
 (1 − η2)

2

1
ϕ01

 η1
2
 (1 − η1)

2
 + 2 (η1 − η2) 




− 

γ
γ − 1

 + 
γ + 1

2 (γ − 1)
 (η1 + η2)





 . (64)

Fig. 6. Profiles of the functions η = η(x) and f = f(x) in the region of x ≥ 0.
Both functions have two discontinuities at x = 0 and x = x1 = 0.0178.

320



We now consider the distribution of the function η = η(x) for ϕ0 = 16 ⁄ 275 E 0.058182 (curve 2 in Fig. 4). Let an

"internal" discontinuity arise at x = x1 E 0.0178, η(x1) = η1 E 0.55, η(x1) = η2 E 0.2. On the assumtion that ϕ01 =

ϕ0 and γ = 5 ⁄ 3, by formula (64) we determine the corresponding value of the parameter ϕ02: ϕ02 E 0.072554. It is

assumed that ϕ02 > ϕ0
cr = 0.0625. At x > x1, the distribution η = η(x) exists at all the values of x > 0, and η → 

γ − 1

γ + 1

= 0.25 at x → ∞. Figure 6 presents the distributions of the function η = η(x), defining the dimensionless specific vol-

ume, and the dimensionless temperature function f = f(x) in the region of x ≥ 0; each of these functions has two dis-
continuities at x = 0 and x = x1 = 0.0178.

CONCLUSIONS

The hyperbolic heat transfer depends substantially on the change in the relaxation time τ: an increase in it
leads to an increase in the absolute temperature and to a decrease in the depth of heating.

The traveling waves defining the heat transfer by the Fourier law (τ B 0) exist only at values of the inde-
pendent variables m and t changing within limited ranges, in which the velocity of the traveling wave is larger than
the velocity of sound. In the case where τ ≠ 0, a solution of the type of a traveling wave can exist at all the values
of m ≥ 0 and t ≥ 0, and the "supersonic" flow is changed to a "subsonic" one.

A hyperbolic heat transfer is characterized by the change from the "initial background" in the form of a large
discontinuity of the desired functions, including the temperature and heat-flow functions. In this case, traveling waves
with the second ("internal") discontinuity of quantities also exist.

It is shown that the solutions being considered differ substantially from the classical ones that are considered
on the assumption that the heat flow is proportional to the temperature gradient (Fourier law).

This work was carried out with financial support from the Russian foundation for Basic Research (grants No.
05-01-00510 and No. 05-01-00631).

NOTATION

C, C0, C1, C2, integration constants; Cγ, isothermal velocity of sound; D and D
__

, mass and constant mass ve-
locities of the front of a large discontinuity of the desired quantities respectively; DT, mass velocity of propagation of
thermal disturbances including the relaxation of the heat flow; F, F

__
, desired functions; f = f(s), dimensionless function

of the temperature variables s; K = K0T a0, mass coefficient of heat conductivity represented as the temperature power
function; K0, constant; m, Lagrange mass coordinate; p, pressure function; R, universal gas constant; s, dimensionless
"self-similar" variable; s0, dimensionless "self-similar" variable defining the boundary condition; t, time; T, T

~
, tempera-

ture function; v, velocity function; V, function determined by relation (12); V
l

, function determined in the group of for-
mulas (37); V

~
, particular case of the function V; W, W

~
, functions of heat flow; W0, initial value of the function of heat

flow; x, dimensionless variable for the case of traveling waves; α = α(s), dimensionless function of the velocity vari-
able s; β = β(s), dimensionless function of the pressure variable s; γ > 1, constant relation between the specific heat
capacities; ε, specific internal energy; η = η(s), specific volume representing the dimensionless function of the density
variable s; η~ and ηl , special cases of the dimensionless function η; ρ, density function; ρ0, initial value of the density
function; τ = τ0T a1, relaxation time of a heat flow represented as the temperature power function; τl0 and ϕ0, dimen-
sionless combinations of the constants τ0, R, and ρ0; ϕ0

cr, critical value of ϕ0; ψ, function determined by relation (57);
ω = ω(s), dimensionless function of the heat-flow variable. Subscripts: *, selected value of a function at m = 0; 1,
value upstream of the discontinuity front; 2, values downstream of the discontinuity front; a0, coefficient defining the
temperature dependence of the heat-conductivity coefficient; a1, coefficient defining the temperature dependence of the
relaxation time; b0, coefficient defining the dependence of the heat conductivity on the density; b1, coefficient defining
the dependence of the relaxation time on the density; g, coefficient defining the time dependence of the heat flow; n,
coefficient defining the time dependence of the dimensionless "self-similar" variable; n0, coefficient defining the time
dependence of the dimensionless temperature function; v, vacuum; cr, critical.
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